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Stability of Parameter Adaptation Algorithms

Big picture

I For
θ̂ (k+1) = θ̂ (k)+ [correction term]

we haven’t talked about whether θ̂ (k) will converge to the true
value θ if k → ∞. We haven’t even talked about whether θ̂ (k)
will stay bounded or not!

I Tools of stability evaluation: Lyapunov-based analysis, or
hyperstability theory (topic of this lecture)
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Hyperstability theory
history

Vasile M. Popov:
I born in 1928, Romania

I retired from University of Florida in 1993
I developed hyperstability theory independently from Lyapnov

theory
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Hyperstability theory
Consider a closed-loop system in Fig. 1

+//◦ u // LTI block //

vw
−OO

Nonlinear block oo

Figure 1: Block diagram for hyperstability analysis

The linear time invariant (LTI) block is realized by
continuous-time case:

ẋ (t) = Ax (t)+Bu (t)
v (t) = Cx (t)+Du (t)

discrete-time case:

x (k+1) = Ax (k)+Bu (k)
v (k) = Cx (k)+Du (k)

Hyperstability discusses conditions for “nice” behaviors in x .
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Passive systems

Definition (Passive system).
The system v // System // w is called passive if

∫ t1

0
wT (t)v (t)dt ≥−γ

2, ∀t1≥ 0 or
k1

∑
k=0

wT (k)v (k)≥−γ
2, ∀k1≥ 0

where δ and γ depends on the initial conditions.

I intuition:
∫ t1

0 wT (t)v (t)dt is the work/supply done to the
system. By conservation of energy,

E (t1)≤ E (0)+
∫ t1

0
wT (t)v (t)dt
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Strictly passive systems
If the equality is strict in the passivity definition, with∫ t1

0
wT (t)v (t)dt ≥−γ

2

+δ

∫ t1

0
vT (t)v (t)dt+ ε

∫ t1

0
wT (t)w (t)dt, ∀t1 ≥ 0

or in the discrete-time case

k1

∑
k=0

wT (k)v (k)≥−γ
2

+δ

k1

∑
k=0

vT (k)v (k)+ ε

k1

∑
k=0

wT (k)w (k) , ∀k1 ≥ 0

where δ ≥ 0, ε ≥ 0, but not both zero, the system is strictly passive.
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Passivity of combined systems

Fact (Passivity of connected systems).
If two systems S1 and S2 are both passive, then the following parallel
and feedback combination of S1 and S2 are also passive

// S1

+ ��v ◦ // w

// S2

+
OO

v + //◦ // S1 // w
−
OO

S2 oo
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Hyperstability theory

Definition (Hyperstability).
The feedback system in Fig. 1 is hyperstable if and only if there exist
positive constants δ > 0 and γ > 0 such that

‖x(t)‖< δ [‖x(0)‖+ γ] , ∀t > 0 or ‖x(k)‖< δ [‖x(0)‖+ γ] , ∀k > 0

for all feedback blocks that satisfy the Popov inequality

∫ t1

0
wT (t)v (t)dt ≥−γ

2, ∀t1≥ 0 or
k1

∑
k=0

wT (k)v (k)≥−γ
2, ∀k1≥ 0

In other words, the LTI block is bounded in states for any initial
conditions for any passive nonlinear blocks.
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Hyperstability theory

Definition (Asymptotic hyperstability).
The feedback system below is asymptotically hyperstable if and only
if it is hyperstable and for all bounded w satisfying the Popov
inequality we have

lim
k→∞

x(k) = 0

+//◦−
u // LTI block //

vw

OO

Nonlinear block oo
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Hyperstability theory

Theorem (Hyperstability).
The feedback system in Fig. 1 is hyperstable if and only if the
nonlinear block satisfies Popov inequality (i.e., it is passive) and the
LTI transfer function is positive real.

Theorem (Asymptotical hyperstability).
The feedback system in Fig. 1 is asymptotically hyperstable if and
only if the nonlinear block satisfies Popov inequality and the LTI
transfer function is strictly positive real.

intuition: a strictly passive system in feedback connection with a
passive system gives an asymptotically stable closed loop.
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Positive real and strictly positive real

Positive real transfer function (continuous-time case): a SISO
transfer function G (s) is called positive real (PR) if

I G (s) is real for real values of s
I Re{G (s)}> 0 for Re{s}> 0

The above is intuitive but not practical to evaluate. Equivalently,
G (s) is PR if
1. G (s) does not possess any pole in Re{s}> 0 (no unstable poles)
2. any pole on the imaginary axis jω0 does not repeat and the

associated residue (i.e., the coefficient appearing in the partial
fraction expansion) lims→jω0 (s− jω0)G (s) is non-negative

3. ∀ω ∈ R where s = jω is not a pole of G (s),
G (jω)+G (−jω) = 2Re{G (jω)} ≥ 0
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Positive real and strictly positive real
Strictly positive real transfer function (continuous-time case): a SISO
transfer function G (s) is strictly positive real (SPR) if
1. G (s) does not possess any pole in Re{s} ≥ 0

1. ∀ω ∈ R, G (jω)+G (−jω) = 2Re{G (jω)}> 0

Figure: example Nyquist plot of a SPR transfer function
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Positive real and strictly positive real
discrete-time case

A SISO discrete-time transfer function G (z) is positive real (PR) if:
1. it does not possess any pole outside of the unit circle
2. any pole on the unit circle does not repeat and the associated

redsidue is non-negative
3. ∀|ω| ≤ π where z = ejω is not a pole of G (z),

G(e−jω)+G(ejω) = 2Re
{
G(ejω)

}
≥ 0

G (z) is strictly positive real (SPR) if:
1. G(z) does not possess any pole outside of or on the unit circle

on z-plane
2. ∀|ω|< π, G(e−jω)+G(ejω) = 2Re

{
G(ejω)

}
> 0
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Examples of PR and SPR transfer functions

I G (z) = c is SPR if c > 0
I G (z) = 1

z−a , |a|< 1 is asymptotically stable but not PR:

2Re
{

G
(
ejω)}= 1

ejω −a +
1

e−jω −a

= 2 cosω−a
1+a2−2acosω

I G (z) = z
z−a , |a|< 1 is asymptotically stable and SPR
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Strictly positive real implies strict passivity

It turns out [see Appendix]:
Lemma: the LTI system G (s) = C (sI−A)−1B+D (in minimal
realization)

ẋ = Ax +Bu
y = Cx +Du

is
I passive if G (s) is positive real
I strictly passive if G (s) is strictly positive real

Analogous results hold for discrete-time systems.
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Understanding the hyperstability theorem
Example: consider a mass-spring-damper system

mẍ +bẋ +kx = u⇒

Gu→x (s) =
1

ms2 +bs+k
Gu→v (s) =

s
ms2 +bs+k

with a general nonlinear feedback control law

0
+//◦−

u // Gu→v (s) //

vw

OO

Nonlinear block oo

I
∫ t1

0 u (t)v (t)dt is the total energy supplied to the system
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Understanding the hyperstability theorem
I if the nonlinear block satisfies the Popov inequality∫ t1

0
w (t)v (t)dt ≥−γ

2
0 , ∀t1 ≥ 0

then from u (t) =−w (t), the energy supplied to the system is
bounded by ∫ t1

0
u (t)v (t)dt ≤ γ

2
0

I energy conservation (assuming v (0) = v0 and x (0) = x0):
1
2mv2 +

1
2kx

2− 1
2mv2

0 −
1
2kx

2
0 =

∫ t1

0
u (t)v (t)dt ≤ γ

2
0

I define state vector x = [x1,x2]
T , x1 =

√
k
2x , x2 =

√m
2 v , then

||x (t) ||22 ≤ ||x (0) ||22 + γ
2
0 ≤ (||x (0) ||2 + γ0)

2

which is a special case in the hyperstability definition
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Understanding the hyperstability theorem

+//◦−
u // LTI block //

vw
OO

Nonlinear block oo

intuition from the example:
The nonlinear block satisfying Popov inequality assures bounded
supply to the LTI system. Based on energy conservation, the energy
of the LTI system is bounded. If the energy function is positive
definite with respect to the states, then the states will be bounded.

more intuition:
If the LTI system is strictly passive, it consumes energy. The bounded
supply will eventually be all consumed, hence the convergence to zero
for the states.
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A remark about hyperstability
An example of a system that is asymptotically hyperstable and stable:

v + //◦ // 1
s+1

// w
−
OO

static gain k (> 0) oo

Stable systems may however be not hyperstable: for instance

v + //◦ // 1
s−1

// w
−
OO

static gain k (> 1) oo

is stable but not hyperstable ( 1
s−1 is unstable and hence not SPR)
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PAA stability analysis by hperstability theory

I step 1: translate the adaptation algorithm to a feedback
combination of a LTI block and a nonlinear block, as shown in
Fig. 1

I step 2: verify that the feedback block satisfies the Popov
inequality

I step 3: check that the LTI block is strictly positive real

I step 4: show that the output of the feedback block is bounded.
Then from the definition of asymptotic hyperstability, we
conclude that the state x converges to zero
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Example: hyperstability of RLS with constant
adaptation gain

Recall PAA with recursive least squares:
I a priori parameter update

θ̂ (k+1) = θ̂ (k)+ F (k)φ (k)
1+φT (k)F (k)φ (k)

ε
o (k+1)

I a posteriori parameter update

θ̂ (k+1) = θ̂ (k)+F (k)φ (k)ε (k+1)

We use the a posteriori form to prove that the RLS with
F (k) = F � 0 is always asymptotically hyperstable.
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Example cont’d
step 1: transformation to a feedback structure

θ̂ (k+1) = θ̂ (k)+Fφ (k)ε (k+1)

parameter estimation error (vector) θ̃ (k) = θ̂ (k)−θ :

θ̃ (k+1) = θ̃ (k)+Fφ (k)ε (k+1)

a posteriori prediction error ε (k+1) = y (k+1)− θ̂T (k+1)φ (k):

ε (k+1) = θ
T

φ (k)− θ̂
T (k+1)φ (k)

=−θ̃
T (k+1)φ (k)
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Example cont’d
step 1: transformation to a feedback structure
PAA equations:

θ̃ (k+1) = θ̃ (k)+Fφ (k)ε (k+1)
ε (k+1) =−θ̃

T (k+1)φ (k)

equivalent block diagram:

0 +//◦ // 1 // ε(k+1)−OO

×
θ̃T (k+1)φ(k)

oo ◦θ̃(k+1)
F+oo ×oo oo

// z−1

+
OO

φ(k) φ(k)
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Example cont’d
step 2: Popov inequality

for the feedback nonlinear block, need to prove

k1

∑
k=0

θ̃
T (k+1)φ (k)ε (k+1)≥−γ

2
0 , ∀k1 ≥ 0

θ̃ (k+1)− θ̃ (k) = Fφ (k)ε (k+1) gives

k1

∑
k=0

θ̃
T (k+1)φ (k)ε (k+1)

=
k1

∑
k=0

(
θ̃

T (k+1)F−1
θ̃ (k+1)− θ̃

T (k+1)F−1
θ̃ (k)

)
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Example cont’d
step 2: Popov inequality

“adding and substracting terms” gives

k1

∑
k=0

θ̃
T (k+1)φ (k)ε (k+1)

=
k1

∑
k=0

(
θ̃

T (k+1)F−1
θ̃ (k+1)− θ̃

T (k+1)F−1
θ̃ (k)

)
=

k1

∑
k=0

(
θ̃

T (k+1)F−1
θ̃ (k+1)± 1

2 θ̃
T (k)F−1

θ̃ (k)

−θ̃
T (k+1)F−1

θ̃ (k)
)
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Example cont’d
step 2: Popov inequality
Combining terms yields

k1

∑
k=0

(
θ̃

T (k +1)F−1
θ̃ (k +1)± 1

2 θ̃
T (k)F−1

θ̃ (k)− θ̃
T (k +1)F−1

θ̃ (k)
)

=
k1

∑
k=0

1
2

(
θ̃

T (k +1)F−1
θ̃ (k +1)− θ̃

T (k)F−1
θ̃ (k)

)
+

k1

∑
k=0

1
2

(
θ̃

T (k +1)F−1
θ̃ (k +1)−2θ̃

T (k +1)F−1
θ̃ (k)+ θ̃

T (k)F−1
θ̃ (k)

)
︸ ︷︷ ︸

[F]

I [F] is equivalent to(
F−1/2

θ̃ (k +1)−F−1/2
θ̃ (k)

)T (
F−1/2

θ̃ (k +1)−F−1/2
θ̃ (k)

)
≥ 0
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Example cont’d
step 2: Popov inequality

I the underlined term is also lower bounded:

k1

∑
k=0

1
2

(
θ̃

T (k+1)F−1
θ̃ (k+1)− θ̃

T (k)F−1
θ̃ (k)

)
=

1
2 θ̃

T (k1 +1)F−1
θ̃ (k1 +1)− 1

2 θ̃
T (0)F−1

θ̃ (0)

≥−1
2 θ̃

T (0)F−1
θ̃ (0)

hence

k1

∑
k=0

θ̃
T (k+1)φ (k)ε (k+1)≥−1

2 θ̃
T (0)F−1

θ̃ (0)
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Example cont’d
step 3: SPR condition

0
+//◦ // 1 // ε(k+1)−

w(k)
OO

Nonlinear Block oo

the identity block G
(
z−1)= 1 is always SPR

I from steps 1-3, we conclude the adaptation system is
asymptotically hyperstable

I this means ε (k+1) will be bounded, and if w (k) is further
shown to be bounded, ε (k+1) converge to zero
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Example cont’d
step 4: boundedness of the signal

0 +//◦ // 1 // ε (k+1)−
w(k)

OO

Nonlinear Block oo

I ε (k+1) =−w (k), so w (k) is bounded if ε (k+1) is bounded
I thus hyperstability theorem gives that ε (k+1) converges to zero
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Example cont’d
intuition

0 +//◦ // 1 // ε (k+1)−
w(k)

OO

Nonlinear Block oo

For this simple case, we can intuitively see why ε (k+1)→ 0: Popov
inequality gives ∑

k1
k=0 ε (k+1)w (k)≥−γ2

0 ; as w (k) =−ε (k+1), so

k1

∑
k=0

ε
2 (k+1)≤ γ

2
0

Let k1→ ∞. ε (k+1) must converge to 0 to ensure the boundedness.
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One remark

Recall
ε (k+1) = εo (k+1)

1+φT (k)Fφ (k)

I ε (k+1)→ 0 does not necessarily mean εo (k+1)→ 0
I need to show φ (k) is bounded: for instance, the plant needs to

be input-output stable for y (k) to be bounded
I see details in Landau et al, “Adaptive Control”, 2nd Ed, Springer

There are different PAAs with different stability and convergence
requirements

Stability of Parameter Adaptation Algorithms PAA Stability-33



Summary

1. Big picture

2. Hyperstability theory
Passivity
Main results
Positive real and strictly positive real
Understanding the hyperstability theorem

3. Procedure of PAA stability analysis by hyperstability theory

4. Appendix
Strictly positive real implies strict passivity

Stability of Parameter Adaptation Algorithms PAA Stability-34

Exercise
In the following block diagrams, u and y are respectively the input
and output of the overall system; h (·) is a sector nonlinearity
satisfying

2 |x |< |h (x)|< 5 |x |

Check whether they satisfy the Popov inequality.

u //
∫

// y u //
∫

// h (·) // y

// h (·)

+��u //
∫

+
//◦ y //

u //
∫

// 1
as+1 , a > 0 // y
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*Kalman Yakubovich Popov Lemma

Kalman Yakubovich Popov (KYP) Lemma connects
frequency-domain SPR conditions and time-domain system matrices:
Lemma: Consider G (s) = C (sI−A)−1B+D where (A,B) is
controllable and (A,C) is observable. G (s) is strictly positive real
if and only if there exist matrices P = PT � 0, L, and W , and a
positive constant ε such that

PA+ATP =−LTL− εP
PB = CT −LTW

W TW = D+DT

Proof: see H. Khalil, “Nonlinear Systems”, Prentice Hall
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*Kalman Yakubovich Popov Lemma

Discrete-time version of KYP lemma: replace s with z and replace
the matrix equalities with

ATPA−P =−LTL− εP
BTPA−C =−KTL

D+DT −BTPB = KTK
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*Strictly positive real implies strict passivity

From KYP lemma, the following result can be shown:
Lemma: the LTI system G (s) = C (sI−A)−1B+D (in minimal
realization)

ẋ = Ax +Bu
y = Cx +Du

is
I passive if G (s) is positive real
I strictly passive if G (s) is strictly positive real

Analogous results hold for discrete-time systems.
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*Strictly positive real implies strict passivity
Proof: Consider V = 1

2x
TPx :

V (x (T ))−V (x (0)) =
∫ T

0
V̇ dt =

∫ T

0

[
1
2xT

(
AT P +PA

)
x +uT BT Px

]
dt

Let u and y be the input and the output of G (s). KYP lemma gives

V (x (T ))−V (x (0)) =
∫ T

0

[
−1

2xT
(

LT L+ εP
)

x +uT BT Px
]

dt

∫ T

0
uT ydt =

∫ T

0
uT (Cx +Du)dt =

∫ T

0

[
uT
(

BT P +W T L
)

x +uT Du
]

dt

=
∫ T

0

[
uT
(

BT P +W T L
)

x +
1
2uT

(
D+DT

)
u
]

dt

=
∫ T

0

[
uT
(

BT P +W T L
)

x +
1
2uT W T Wu

]
dt
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*Strictly positive real implies strict passivity

hence∫ T

0
uT ydt−V (x (T ))+V (x (0))

=
∫ T

0

[
uT
(

BT P +W T L
)

x +
1
2uT W T Wu+

1
2xT

(
LT L+ εP

)
x −uT BT Px

]
dt

=
1
2

∫ T

0
(Lx +Wu)T (Lx +Wu)dt + 1

2εxT Px ≥ 1
2εxT Px > 0
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